Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

A. B. Soaresa; M. N. Arbacha, E.A. Lucenaa; A. L. A. Dantasa, B. M. Dantasa

a Laboratório de Monitoração Interna, Instituto de Radioproteção e Dosimetria, 22780-160, Rio de Janeiro, Brazil
alexandrebaso@globo.com

ABSTRACT

This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (TI) 3”x3” scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of 152Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations.

Keywords: Internal monitoring, Internal dosimetry, Bioassay.
1. INTRODUCTION

Many international organizations are worried about the nuclear terror events. In 2016, the International Atomic Energy Agency (IAEA) published the Information Circular in attention for Nuclear and Radiological Terrorism [1]. That document recognizes the need for ensuring adequate nuclear emergency preparedness and response capabilities. Radiologic terrorism events include Radiological Dispersal Devices (RDD), referred as dirty bombs, which employ conventional explosives to disperse radioactive materials [2]. In Brazil, a government body was created for this purpose including civil and military entities [3]. The hospitals also should be prepared to identify and quantify intakes of radionuclides of interest in order to assess the committed effective doses associated to the internal exposure. In such situations a fixed whole body counting system may not be suitable to attend an increased demand of in vivo measurements [4]. Therefore, portable detection devices are more versatile and effective equipments to be employed for prompt response to emergencies involving intakes of radionuclides.

2. MATERIALS AND METHODS

The detection system consists in a NaI(Tl)3”x3” assembled on a tripod and connected to the compact electronics. Spectrum acquisition and analysis is software-controlled. An “Efficiency vs energy” curve was obtained with a standard liquid source of 152Eu contained in 3 L polyethylene bottles positioned at 0.05 m distance from detector surface. Five Regions-of-Interest (ROI) were defined and a series of five 900-seconds counts were performed. The average net count was recorded in each ROI. The efficiencies were calculated as follows:

$$\varepsilon = \frac{(N_{ctg} / \Delta t)}{(A_c \times I_\gamma)}$$ \hspace{1cm} (1)

where N_{ctg} is the average count in each ROI, Δt is count time, A_c is the source activity and I_γ is the relative intensity of the photon.
For evaluation purposes, 137Cs was selected as radionuclide possibly present in an emergency scenario. Thus, the efficiency at 661.6 keV [5] in cps/dps was calculated from the Eff x Energy curve obtained previously. The calibration factor (CF) in cps/Bq was calculated from equation 2, where I_γ is the gamma relative intensity for 137Cs at 661.6 keV:

$$CF = e \times I_\gamma \quad (2)$$

The evaluation of the system sensitivity is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities [6]. The minimum detectable activity (MDA) in Bq was obtained from equation 3:

$$MDA = (4.65 \times \sqrt{N_{BG}}) \div (t_{BG} \times CF) \quad (3)$$

where N_{BG} is the total background counts (BG) and t_{BG} is the count time.

The MDI is a function of the MDA and depends on the exposure scenario and time elapsed between intake and in vivo measurement. It was calculated as follows (equation 4):

$$MDI = MDA \times m(t) \quad (4)$$

where $m(t)$ is the retention fraction in the compartment of interest, in Bq/Bq [7].

The minimum detectable effective dose (MDED) in μSv was obtained from equation 5:

$$MDED = MDI \times e(g) \quad (5)$$

where $e(g)$ is the dose coefficient associated to the intake scenario adopted in the simulation [8].

In this work, a single intake of 137Cs by inhalation was assumed and the in vivo measurement performed 1 day after incorporation.

3. RESULTS AND DISCUSSION

The efficiency vs energy curve resulted $e(E) = (1 \times 10^{-9} \text{ keV}^{-2} E^2 - 3 \times 10^{-6} \text{ keV}^{-1} E + 0.0039)$ cps/dps ($R^2 = 0.94$). The efficiency at energy 661.6 keV (137Cs), FC, MDA, MDI, MDED were obtained from the equations previously described, considering $N_{BG} = 5411$ ctg, $t_{BG} = 300$ s, $I_\gamma = 0.851$, $m(t) = 1.70 \times 10^{-1}$ Bq/Bq and $e(g) = 8.84 \times 10^{-6}$ mSv/Bq.

The results were CF = 0.0020 cps/Bq; MDA = 569 Bq; MDI = 3350 Bq and MDED = 30 μSv.
4. CONCLUSION

The dose detection limits for the selected radionuclide of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations or unexpected event. It is recommended to evaluate this technique considering other radionuclides of interest that could be used in malevolent actions. The proposed calibration and measurement protocols could be easily applied to other detection devices owned by civil and military medical facilities in order to improve prompt response capabilities in case of emergency situations.

REFERENCES

